Synthetic Posttranslational Modifications: Chemical Catalyst-Driven Regioselective Histone Acylation of Native Chromatin.
Yoshifumi AmamotoYuki AoiNozomu NagashimaHiroki SutoDaisuke YoshidomeYasuhiro ArimuraAkihisa OsakabeDaiki KatoHitoshi KurumizakaShigehiro A KawashimaKenzo YamatsuguMotomu KanaiPublished in: Journal of the American Chemical Society (2017)
Posttranslational modifications (PTMs) of histones play an important role in the complex regulatory mechanisms governing gene transcription, and their dysregulation can cause diseases such as cancer. The lack of methods for site-selectively modifying native chromatin, however, limits our understanding of the functional roles of a specific histone PTM, not as a single mark, but in the intertwined PTM network. Here, we report a synthetic catalyst DMAP-SH (DSH), which activates chemically stable thioesters (including acetyl-CoA) under physiological conditions and transfers various acyl groups to the proximate amino groups. Our data suggest that DSH, conjugated with a nucleosome ligand, such as pyrrole-imidazole-polyamide and LANA (latency-associated nuclear antigen)-peptide, promotes both natural (including acetylation, butyrylation, malonylation, and ubiquitination) and non-natural (azido- and phosphoryl labeling) PTMs on histones in recombinant nucleosomes and/or in native chromatin, at lysine residues close to the DSH moiety. To investigate the validity of our method, we used LANA-DSH to promote histone H2B lysine-120 (K120) acylation, the function of which is largely unknown. H2BK120 acetylation and malonylation modulated higher-order chromatin structures by reducing internucleosomal interactions, and this modulation was further enhanced by histone tail acetylation. This approach, therefore, may have versatile applications for dissecting the regulatory mechanisms underlying chromatin function.
Keyphrases
- transcription factor
- genome wide
- dna damage
- gene expression
- dna methylation
- ionic liquid
- genome wide identification
- fatty acid
- copy number
- histone deacetylase
- papillary thyroid
- high resolution
- oxidative stress
- photodynamic therapy
- big data
- squamous cell carcinoma
- deep learning
- artificial intelligence
- data analysis
- machine learning