Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing.
Ryan T DavisKerrigan BlakeDennis MaMari B Ishak GabraGrace A HernandezAnh T PhungYing YangDustin MaurerAustin E Y T LefebvreHamad AlshetaiwiZhengtao XiaoJuan LiuJason W LocasaleMichelle A DigmanEric MjolsnessMei KongZena WerbDevon A LawsonPublished in: Nature cell biology (2020)
Although metastasis remains the cause of most cancer-related mortality, mechanisms governing seeding in distal tissues are poorly understood. Here, we establish a robust method for the identification of global transcriptomic changes in rare metastatic cells during seeding using single-cell RNA sequencing and patient-derived-xenograft models of breast cancer. We find that both primary tumours and micrometastases display transcriptional heterogeneity but micrometastases harbour a distinct transcriptome program conserved across patient-derived-xenograft models that is highly predictive of poor survival of patients. Pathway analysis revealed mitochondrial oxidative phosphorylation as the top pathway upregulated in micrometastases, in contrast to higher levels of glycolytic enzymes in primary tumour cells, which we corroborated by flow cytometric and metabolomic analyses. Pharmacological inhibition of oxidative phosphorylation dramatically attenuated metastatic seeding in the lungs, which demonstrates the functional importance of oxidative phosphorylation in metastasis and highlights its potential as a therapeutic target to prevent metastatic spread in patients with breast cancer.
Keyphrases
- single cell
- rna seq
- induced apoptosis
- squamous cell carcinoma
- high throughput
- small cell lung cancer
- cell cycle arrest
- gene expression
- transcription factor
- end stage renal disease
- oxidative stress
- endothelial cells
- protein kinase
- chronic kidney disease
- newly diagnosed
- ejection fraction
- endoplasmic reticulum stress
- minimally invasive
- magnetic resonance
- signaling pathway
- prognostic factors
- cardiovascular events
- type diabetes
- computed tomography
- cell death
- cardiovascular disease
- risk factors
- quality improvement
- patient reported outcomes
- heat shock
- cell proliferation
- heat shock protein
- bioinformatics analysis