Login / Signup

Tailoring Pickering Double Emulsions by in Situ Particle Surface Modification.

Madhvi TiwariMadivala G BasavarajVenkateshwar Rao Dugyala
Published in: Langmuir : the ACS journal of surfaces and colloids (2023)
Fundamental studies on the formation and stability of Pickering double emulsions are crucial for their industrial applications. Available methods of double emulsion preparation involve multiple tedious steps and can formulate a particular type of double emulsion, that is, water-in-oil-in-water (w/o/w) or oil-in-water-in-oil (o/w/o). In this work, we proposed a simple single-step in situ surface modification method to stabilize different types of double emulsions using hematite and silica particle systems which involves the addition of oleic acid. In the emulsification studies, we use (i) a combination of hematite and oleic acid, which is termed the binary system, and (ii) a mixture of hematite and silica particles together with oleic acid, which is designated as the ternary system. The wettability of hematite particles is tuned by direct or sequential addition of oleic acid to the water-decane medium. The direct surface modification (which involves the addition of a known quantity of oleic acid to the oil-water mixtures at once) of hematite particles in both binary and ternary systems shows transitional phase inversion from oil-in-water (o/w) to water-in-oil (w/o) emulsions. However, sequential surface modification results in the transition of a single emulsion to double emulsions. In the case of the binary system, the sequential surface modification of the hematite-particle-stabilized o/w emulsion can be converted into double emulsions of o/w/o type. However, in the case of the ternary system, i.e., in the presence of silica particles, sequential surface modification of hematite particles stabilizes both single (o/w) and double (w/o/w and o/w/o) emulsions. The critical concentration of oleic acid required to form a double emulsion is observed to be dependent on the ratio of the surface area of the silica particle to the total surface area of particles ( S ) and mixing protocols. A study of the size distribution of oil and water droplets of double emulsions shows that droplet size can be controlled by oleic acid concentration and magnitude of S . The arrangements of the particles at interfaces are visualized by SEM imaging. In this way, we developed an easy and novel single-step method of double emulsion preparation and provide a strategy to tailor the formation of different types of emulsions with a single/binary particle system by sequential in situ surface modification of the particles.
Keyphrases
  • fatty acid
  • ionic liquid
  • high throughput
  • mass spectrometry