Reduction in mRNA Expression of the Neutrophil Chemoattract Factor CXCL1 in Pseudomonas aeruginosa Treated Barth Syndrome B Lymphoblasts.
Hana M ZegallaiKangmin DuanGrant M HatchPublished in: Biology (2023)
Barth Syndrome (BTHS) is a rare X-linked genetic disease caused by a mutation in the TAFAZZIN gene, which codes for the protein tafazzin involved in cardiolipin remodeling. Approximately 70% of patients with BTHS exhibit severe infections due to neutropenia. However, neutrophils from BTHS patients have been shown to exhibit normal phagocytosis and killing activity. B lymphocytes play a crucial role in the regulation of the immune system and, when activated, secrete cytokines known to attract neutrophils to sites of infection. We examined the expression of chemokine (C-X-C motif) ligand 1 (CXCL1), a known chemotactic for neutrophils, in Epstein-Barr virus transformed control and BTHS B lymphoblasts. Age-matched control and BTHS B lymphoblasts were incubated with Pseudomonas aeruginosa for 24 h and then cell viability, CD27+, CD24+, CD38+, CD138+ and PD1+ surface marker expression and CXCL1 mRNA expression determined. Cell viability was maintained in lymphoblasts incubated in a ratio of 50:1 bacteria:B cells. Surface marker expression was unaltered between control and BTHS B lymphoblasts. In contrast, CXCL1 mRNA expression was reduced approximately 70% ( p < 0.05) in untreated BTHS B lymphoblasts compared to control and approximately 90% ( p < 0.05) in bacterial treated BTHS B lymphoblasts compared to the control. Thus, naïve and bacterial-activated BTHS B lymphoblasts exhibit reduced mRNA expression of the neutrophil chemoattractant factor CXCL1. We suggest that impaired bacterial activation of B cells in some BTHS patients could influence neutrophil function via impairing neutrophil recruitment to sites of infection and this could potentially contribute to these infections.
Keyphrases
- pseudomonas aeruginosa
- epstein barr virus
- newly diagnosed
- poor prognosis
- end stage renal disease
- ejection fraction
- cystic fibrosis
- magnetic resonance imaging
- binding protein
- prognostic factors
- copy number
- case report
- gene expression
- staphylococcus aureus
- long non coding rna
- patient reported outcomes
- biofilm formation
- candida albicans
- amino acid
- diffuse large b cell lymphoma