The mechanisms underlying tissue repair in response to damage have been one of main subjects of investigation. Here we leverage the wound-induced hair neogenesis (WIHN) models in adult mice to explore the correlation between degree of damage and the healing process and outcome. The multimodal analysis, in combination with single-cell RNA sequencing help to explore the difference in wounds of gentle and heavy damage degrees, identifying the potential role of toll-like receptor 9 (TLR9) in sensing the injury and regulating the immune reaction by promoting the migration of γδT cells. The TLR9 deficient mice or wounds injected with TLR9 antagonist have greatly impaired healing and lower WIHN levels. Inhibiting the migration of γδT cells or knockout of γδT cells also suppress the wound healing and regeneration, which can't be rescued by TLR9agonist. Finally, the amphiregulin (AREG) is shown as one of most important effectors secreted by γδT cells and keratinocytes both in silicon or in the laboratory, whose expression influences WIHN levels and the expression of stem cell markers. In total, our findings reveal a previously unrecognized role for TLR9 in sensing skin injury and influencing the tissue repair and regeneration by modulation of the migration of γδT cells, and identify the TLR9-γδT cells-areg axis as new potential targets for enhancing tissue regeneration.
Keyphrases
- toll like receptor
- wound healing
- stem cells
- inflammatory response
- nuclear factor
- immune response
- single cell
- oxidative stress
- poor prognosis
- risk assessment
- rna seq
- long non coding rna
- signaling pathway
- drug induced
- gene expression
- dna methylation
- mesenchymal stem cells
- high glucose
- skeletal muscle
- metabolic syndrome
- young adults
- binding protein
- soft tissue
- high throughput
- chronic pain
- insulin resistance