Apoptosis Enhances the Replication of Human Coronavirus OC43.
Sony MaharjanMijeong KangJinsoo KimDongbum KimSangkyu ParkMinyoung KimKyeongbin BaekYounghee LeeHyung-Joo KwonPublished in: Viruses (2021)
Human coronavirus OC43 (HCoV-OC43) is one of the coronaviruses causing a mild common cold, but few studies have been made on this strain. Here, we identified the molecular mechanisms involved in HCoV-OC43-induced apoptosis and its implications for viral reproduction in Vero cells and MRC-5 cells. HCoV-OC43 infection induced apoptosis that was accompanied by cleavage of caspase-3 and PARP, degradation of cyclin D1, and cell cycle arrest at S and G2M phases. Dephosphorylation of STAT1 and STAT3, induced by HCoV-OC43 infection, was also associated with HCoV-OC43-mediated apoptosis. The pan-caspase inhibitor effectively prevented HCoV-OC43-induced apoptosis and reduced viral replication, suggesting that apoptosis contributes to viral replication. Collectively our results indicate that HCoV-OC43 induces caspase-dependent apoptosis to promote viral replication in Vero cells and MRC-5 cells.