Comparative Study of Antioxidant and Pro-Oxidant Properties of Homoleptic and Heteroleptic Copper Complexes with Amino Acids, Dipeptides and 1,10-Phenanthroline: The Quest for Antitumor Compounds.
Nicolás VeigaNatalia AlvarezEduardo E CastellanoJavier EllenaGianella FacchinMaría H TorrePublished in: Molecules (Basel, Switzerland) (2021)
In a search for new antitumoral agents, a series of homoleptic copper(II) complexes with amino acids and dipeptides, as well as heteroleptic complexes containing both dipeptides and 1,10-phenanthroline, were studied. Furthermore, a single-crystal structure containing alanyl-leucinato ([Cu3(AlaLeu)3(H2O)3(CO3)]·PF6·H2O), which is the first homotrinuclear carbonato-bridged copper(II) complex with a dipeptide moiety, is presented. To assess possible antitumor action mechanisms, we focused on the comparative analysis of pro- and antioxidant behaviors. Pro-oxidant activity, in which the reactive oxygen species (ROS) formed by the reaction of the complexes with H2O2 produce oxidative damage to 2-deoxy-d-ribose, was evaluated using the TBARS method. Additionally, the antioxidant action was quantified through the superoxide dismutase (SOD)-like activity, using a protocol based on the inhibitory effect of SOD on the reduction of nitrobluetetrazolium (NBT) by the superoxide anion generated by the xanthine/xanthine oxidase system. Our findings show that Cu-amino acid complexes are strong ROS producers and moderate SOD mimics. Conversely, Cu-dipeptide-phen complexes are good SOD mimics but poor ROS producers. The activity of Cu-dipeptide complexes was strongly dependent on the dipeptide. A DFT computational analysis revealed that complexes with high SOD-like activity tend to display a large dipole moment and condensed-to-copper charge, softness and LUMO contribution. Moreover, good ROS producers have higher global hardness and copper electrophilicity, lower copper softness and flexible and freely accessible coordination polyhedra.