Critically Appraising the Significance of the Oral Mycobiome.
Patricia I DiazA Dongari-BagtzoglouPublished in: Journal of dental research (2020)
Recent efforts to understand the oral microbiome have focused on its fungal component. Since fungi occupy a low proportion of the oral microbiome biomass, mycobiome studies rely on sequencing of internal transcribed spacer (ITS) amplicons. ITS-based studies usually detect hundreds of fungi in oral samples. Here, we review the oral mycobiome, critically appraising the significance of such large fungal diversity. When harsh lysis methods are used to extract DNA, 2 oral mycobiome community types (mycotypes) are evident, each dominated by only 1 genus, either Candida or Malassezia. The rest of the diversity in ITS surveys represents low-abundance fungi possibly acquired from the environment and ingested food. So far, Candida is the only genus demonstrated to reach a significant biomass in the oral cavity and clearly shown to be associated with a distinct oral ecology. Candida thrives in the presence of lower oral pH and is enriched in caries, with mechanistic studies in animal models suggesting it participates in the disease process by synergistically interacting with acidogenic bacteria. Candida serves as the main etiological agent of oral mucosal candidiasis, in which a Candida-bacteriome partnership plays a key role. The function of other potential oral colonizers, such as lipid-dependent Malassezia, is still unclear, with further studies needed to establish whether Malassezia are metabolically active oral commensals. Low-abundance oral mycobiome members acquired from the environment may be viable in the oral cavity, and although they may not play a significant role in microbiome communities, they could serve as opportunistic pathogens in immunocompromised hosts. We suggest that further work is needed to ascertain the significance of oral mycobiome members beyond Candida. ITS-based surveys should be complemented with other methods to determine the in situ biomass and metabolic state of fungi thought to play a role in the oral environment.