Second-Generation Antiandrogen Therapy Radiosensitizes Prostate Cancer Regardless of Castration State through Inhibition of DNA Double Strand Break Repair.
Mohamed E ElsesySu Jung Oh-HohenhorstAnastassia LöserChristoph OingSally MutiaraSabrina KöcherStefanie MeienAlexandra ZielinskiSusanne Burdak-RothkammDerya TilkiHartwig HulandRudolf SchwarzCordula PetersenCarsten BokemeyerKai RothkammWael Y MansourPublished in: Cancers (2020)
(1) Background: The combination of the first-generation antiandrogens and radiotherapy (RT) has been studied extensively in the clinical setting of prostate cancer (PCa). Here, we evaluated the potential radiosensitizing effect of the second-generation antiandrogens abiraterone acetate, apalutamide and enzalutamide. (2) Methods: Cell proliferation and agarose-colony forming assay were used to measure the effect on survival. Double strand break repair efficiency was monitored using immunofluorescence staining of γH2AX/53BP1. (3) Results: We report retrospectively a minor benefit for PCa patients received first-generation androgen blockers and RT compared to patients treated with RT alone. Combining either of the second-generation antiandrogens and 2Gy suppressed cell growth and increased doubling time significantly more than 2Gy alone, in both hormone-responsive LNCaP and castration-resistant C4-2B cells. These findings were recapitulated in resistant sub-clones to (i) hormone ablation (LNCaP-abl), (ii) abiraterone acetate (LNCaP-abi), (iii) apalutamide (LNCaP-ARN509), (iv) enzalutamide (C4-2B-ENZA), and in castration-resistant 22-RV1 cells. This radiosensitization effect was not observable using the first-generation antiandrogen bicalutamide. Inhibition of DNA DSB repair was found to contribute to the radiosensitization effect of second-generation antiandrogens, as demonstrated by a significant increase in residual γH2AX and 53BP1 foci numbers at 24h post-IR. DSB repair inhibition was further demonstrated in 22 patient-derived tumor slice cultures treated with abiraterone acetate before ex-vivo irradiation with 2Gy. (4) Conclusion: Together, these data show that second-generation antiandrogens can enhance radiosensitivity in PCa through DSB repair inhibition, regardless of their hormonal status. Translated into clinical practice, our results may help to find additional strategies to improve the effectiveness of RT in localized PCa, paving the way for a clinical trial.
Keyphrases
- prostate cancer
- clinical trial
- cell proliferation
- radical prostatectomy
- clinical practice
- end stage renal disease
- randomized controlled trial
- early stage
- ejection fraction
- magnetic resonance imaging
- chronic kidney disease
- drug delivery
- circulating tumor
- induced apoptosis
- type diabetes
- cancer therapy
- metabolic syndrome
- stem cells
- magnetic resonance
- electronic health record
- prognostic factors
- big data
- cell free
- insulin resistance
- study protocol
- adipose tissue
- open label
- bone marrow
- cell cycle
- locally advanced
- cell death
- machine learning
- patient reported
- solid state
- data analysis