Longitudinal Molecular Magnetic Resonance Imaging of Endothelial Activation after Severe Traumatic Brain Injury.
Gloria VeglianteDaniele TolomeoAntoine DrieuMarina RubioEdoardo MicottiFederico MoroDenis VivienGianluigi ForloniCarine AliElisa R ZanierPublished in: Journal of clinical medicine (2019)
Traumatic brain injury (TBI) is a major cause of death and disability. Despite progress in neurosurgery and critical care, patients still lack a form of neuroprotective treatment that can counteract or attenuate injury progression. Inflammation after TBI is a key modulator of injury progression and neurodegeneration, but its spatiotemporal dissemination is only partially known. In vivo approaches to study post-traumatic inflammation longitudinally are pivotal for monitoring injury progression/recovery and the effectiveness of therapeutic approaches. Here, we provide a minimally invasive, highly sensitive in vivo molecular magnetic resonance imaging (MRI) characterization of endothelial activation associated to neuroinflammatory response after severe TBI in mice, using microparticles of iron oxide targeting P-selectin (MPIOs-α-P-selectin). Strong endothelial activation was detected from 24 h in perilesional regions, including the cortex and hippocampus, and peaked in intensity and diffusion at two days, then partially decreased but persisted up to seven days and was back to baseline 15 days after injury. There was a close correspondence between MPIOs-α-P-selectin signal voids and the P-selectin stained area, confirming maximal endothelial activation at two days. Molecular MRI markers of inflammation may thus represent a useful tool to evaluate in vivo endothelial activation in TBI and monitoring the responses to therapeutic agents targeting vascular activation and permeability.
Keyphrases
- traumatic brain injury
- severe traumatic brain injury
- magnetic resonance imaging
- endothelial cells
- oxidative stress
- minimally invasive
- contrast enhanced
- metabolic syndrome
- type diabetes
- magnetic resonance
- blood pressure
- mild traumatic brain injury
- skeletal muscle
- chronic kidney disease
- ejection fraction
- high intensity
- prognostic factors
- diffusion weighted imaging
- iron oxide
- insulin resistance
- replacement therapy
- combination therapy
- prefrontal cortex