Age-related differences in the motor unit action potential size in relation to recruitment threshold.
Adam J SterczalaTrent J HerdaJonathan D MillerAnthony B CicconeMichael A TrevinoPublished in: Clinical physiology and functional imaging (2017)
Motor unit action potential size (MUAPsize ) versus recruitment threshold (RT) relationship analysis provides a non-invasive measure of motor unit (MU) hypertrophy; however, this method's ability to identify MU atrophy is unknown. This investigation sought to determine if MUAPsize versus RT relationship slope (APslope ) comparison could identify evidence of MU atrophy in older individuals. Surface electromyography signals were recorded from the first dorsal interosseous (FDI) of fourteen young (YG, age = 22·29 ± 2·79 years) and ten older (OG, 61·0 ± 2·0 years) subjects during a 50% maximal voluntary contraction (MVC) isometric trapezoidal muscle action. The signals were decomposed to yield a MUAPsize and RT for each MU. For each subject, the MUs recruited between 10% and 50% MVC were linearly regressed as a function of RT to calculate an individual APslope . FDI cross-sectional area (CSA) and echo intensity (EI) were quantified via ultrasonography. The mean APslope was lower for OG (0·033 ± 0·010 mV %MVC-1 ) than YG (0·056 ± 0·019 mV %MVC-1 ). OG and YG possessed similar CSAs (OG: 2·09 ± 0·31 cm2 ; YG: 2·08 ± 0·41 cm2 ); however, OG (53·25 ± 7·56 AU) had greater EI than YG (43·87 ± 7·59 AU). The lower OG mean APslope was due to smaller MUAPsizes of higher-threshold MUs, likely due to atrophy of muscle fibres that comprise those MUs. In support, similar CSA with greater EI indicated increased adipose and fibrous tissue and reduced contractile tissue in OG. Thus, MUAPsize versus RT relationship may provide a non-invasive measure of MU atrophy.
Keyphrases
- skeletal muscle
- cross sectional
- middle aged
- physical activity
- magnetic resonance imaging
- spinal cord
- adipose tissue
- community dwelling
- magnetic resonance
- type diabetes
- insulin resistance
- metabolic syndrome
- spinal cord injury
- high intensity
- risk assessment
- neuropathic pain
- body composition
- diffusion weighted
- diffusion weighted imaging