Precursor-Directed Biosynthesis and Fluorescence Labeling of Clickable Microcystins.
Julia MoschnyWolfram LorenzenAlexandra HilferRobert EckenstalerStefan JahnsHeike EnkeDan EnkePhilipp SchneiderRalf A BenndorfTimo Horst Johannes NiedermeyerPublished in: Journal of natural products (2020)
Microcystins, cyclic nonribosomal heptapeptides, are the most well-known cyanobacterial toxins. They are exceptionally well studied, but open questions remain concerning their physiological role for the producing microorganism or their suitability as lead compounds for anticancer drug development. One means to study specialized metabolites in more detail is the introduction of functional groups that make a compound amenable for bioorthogonal, so-called click reactions. Although it was reported that microcystins cannot be derivatized by precursor-directed biosynthesis, we successfully used this approach to prepare clickable microcystins. Supplementing different azide- or terminal alkyne containing amino acid analogues into the cultivation medium of microcystin-producing cyanobacteria strains, we found that these strains differ strongly in their substrate acceptance. Exploiting this flexibility, we generated more than 40 different clickable microcystins. We conjugated one of these derivatives with a fluorogenic dye and showed that neither incorporation of the unnatural amino acid analogue nor attachment of the fluorescent label significantly affects the cytotoxicity against cell lines expressing the human organic anion transporting polypeptides 1B1 or 1B3. Using time-lapse microscopy, we observed that the fluorescent microcystin is rapidly taken up into eukaryotic cells expressing these transporters.
Keyphrases
- amino acid
- escherichia coli
- quantum dots
- single molecule
- endothelial cells
- living cells
- induced apoptosis
- label free
- minimally invasive
- ms ms
- palliative care
- cell cycle arrest
- photodynamic therapy
- ionic liquid
- cell wall
- cell death
- structure activity relationship
- optical coherence tomography
- high throughput
- cell proliferation
- induced pluripotent stem cells
- fluorescent probe
- pluripotent stem cells
- wild type