Login / Signup

Effects of BARLEYmax and high-β-glucan barley line on short-chain fatty acids production and microbiota from the cecum to the distal colon in rats.

Seiichiro AoeChiemi YamanakaMiki FuwaTaiga TamiyaYasunori NakayamaTakanori MiyoshiEiichi Kitazono
Published in: PloS one (2019)
We investigated whether supplementation with the barley line BARLEYmax (Tantangara; BM), which contains three fermentable fibers (fructan, β-glucan, and resistant starch), modifies the microbiota in cecal and distal colonic digesta in addition to short-chain fatty acids (SCFAs) production more favorably than supplementation with a high-β-glucan barley line (BG012; BG). Male Sprague-Dawley rats were randomly divided into 3 groups that were fed an AIN-93G-based diet that contained 5% fiber provided by cellulose (control), BM or BG. Four weeks after starting the respective diets, the animals were sacrificed and digesta from the cecum, proximal colon and distal colon were collected and the SCFA concentrations were quantified. Microbiota in the cecal and distal colonic digesta were analyzed by 16S rRNA sequencing. The concentrations of acetate and n-butyrate in cecal digesta were significantly higher in the BM and BG groups than in the control group, whereas the concentration of total SCFAs in cecal digesta was significantly higher only in the BM group than in the control group. The concentrations of acetate and total SCFAs in the distal colonic digesta were significantly higher only in the BM group than in the control group. The abundance of Bacteroidetes in cecal digesta was significantly higher in the BM group than in the control group. In contrast, the abundance of Firmicutes in cecal digesta was significantly lower in the BM and BG groups than in the control group. These results indicated that BM increased the concentration of total SCFAs in the distal colonic digesta. These changes might have been caused by fructan and resistant starch in addition to β-glucan. In conclusion, fermentable fibers in BM reached the distal colon and modified the microbiota, leading to an increase in the concentration of total SCFAs in the distal colonic digesta, more effectively compared with the high-β-glucan barley line (BG).
Keyphrases
  • minimally invasive
  • magnetic resonance
  • weight loss
  • ulcerative colitis
  • computed tomography
  • high resolution
  • ionic liquid
  • microbial community
  • anaerobic digestion
  • high throughput sequencing