Login / Signup

Enhancement of the Oxidizing Power of an Oxoammonium Salt by Electronic Modification of a Distal Group.

Kyle M LambertZachary D StempelSadie M KiendziorAshley L BartelsonWilliam F Bailey
Published in: The Journal of organic chemistry (2018)
The multigram preparation and characterization of a novel TEMPO-based oxoammonium salt, 2,2,6,6-tetramethyl-4-(2,2,2-trifluoroacetamido)-1-oxopiperidinium tetrafluoroborate (5), and its corresponding nitroxide (4) are reported. The solubility profile of 5 in solvents commonly used for alcohol oxidations differs substantially from that of Bobbitt's salt, 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperidinium tetrafluoroborate (1). The rates of oxidation of a representative series of primary, secondary, and benzylic alcohols by 1 and 5 in acetonitrile solvent at room temperature have been determined, and oxoammonium salt 5 has been found to oxidize alcohols more rapidly than does 1. The rate of oxidation of meta- and para-substituted benzylic alcohols by either 1 or 5 displays a strong linear correlation to Hammett parameters (r > 0.99) with slopes (ρ) of -2.7 and -2.8, respectively, indicating that the rate-limiting step in the oxidations involves hydride abstraction from the carbinol carbon of the alcohol substrate.
Keyphrases
  • room temperature
  • ionic liquid
  • hydrogen peroxide
  • alcohol consumption
  • molecular docking
  • cross sectional
  • structural basis
  • neural network