Western Diet Accelerates the Impairment of Odor-Related Learning and Olfactory Memory in the Mouse.
Grażyna LietzauThomas NyströmZhida WangVladimer DarsaliaCesare PatronePublished in: ACS chemical neuroscience (2020)
Olfactory dysfunction could be an early indicator of cognitive decline in type 2 diabetes (T2D). However, whether obesity affects olfaction in people with T2D is unclear. This question needs to be addressed, because most people with T2D are obese. Importantly, whether different contributing factors leading to obesity (e.g., different components of diet or gain in weight) affect specific olfactory functions and underlying mechanisms is unknown. We examined whether two T2D-inducing obesogenic diets, one containing a high proportion of fat (HFD) and one with moderate fat and high sugar (Western diet, WD), affect odor detection/discrimination, odor-related learning, and olfactory memory in the mouse. We also investigated whether the diets impair adult neurogenesis, GABAergic interneurons, and neuroblasts in the olfactory system. Here, we further assessed olfactory cortex volume and cFos expression-based neuronal activity. The WD-fed mice showed declined odor-related learning and olfactory memory already after 3 months of diet intake (p = 0.046), although both diets induced similar hyperglycemia and weight gain compared to those of standard diet-fed mice (p = 0.0001 and p < 0.0001, respectively) at this time point. Eight months of HFD and WD diminished odor detection (p = 0.016 and p = 0.045, respectively), odor-related learning (p = 0.015 and p = 0.049, respectively), and olfactory memory. We observed no changes in the investigated cellular mechanisms. We show that the early deterioration of olfactory parameters related to learning and memory is associated with a high content of sugar in the diet rather than with hyperglycemia or weight gain. This finding could be exploited for understanding, and potentially preventing, cognitive decline/dementia in people with T2D. The mechanisms behind this finding remain to be elucidated.
Keyphrases
- weight loss
- weight gain
- cognitive decline
- bariatric surgery
- type diabetes
- mild cognitive impairment
- birth weight
- body mass index
- physical activity
- glycemic control
- working memory
- south africa
- obese patients
- drug induced
- cardiovascular disease
- fatty acid
- quantum dots
- high intensity
- brain injury
- diabetic rats
- blood brain barrier
- long non coding rna
- real time pcr