Login / Signup

Insulin Signaling Disruption and INF-γ Upregulation Induce Aβ 1-42 and Hyperphosphorylated-Tau Proteins Synthesis and Cell Death after Paraquat Treatment of Primary Hippocampal Cells.

Maria Luisa AbascalJavier SanjuanPaula MoyanoEmma SolaAndrea FloresJosé Manuel GarciaJimena GarciaMaría Teresa FrejoJavier Del Pino
Published in: Chemical research in toxicology (2022)
Acute and long-term paraquat (PQ) exposure produces hippocampal neurodegeneration and cognition decline. Although some mechanisms involved in these effects were found, the rest are unknown. PQ treatment, for 1 and 14 days, upregulated interferon-gamma signaling, which reduced insulin levels and downregulated the insulin pathway through phosphorylated-c-Jun N-terminal-kinase upregulation, increasing glucose levels and the production of Aβ 1-42 and phosphorylated-tau, by beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) overexpression and phosphorylated-GSK3β (p-GSK3β; ser9) level reduction, respectively, which induced primary hippocampal neuronal loss. This novel information on the PQ mechanisms leading to hippocampal neurodegeneration could help reveal the PQ actions that lead to cognition dysfunction.
Keyphrases