Login / Signup

Thiazoline-Specific Amidohydrolase PurAH Is the Gatekeeper of Bottromycin Biosynthesis.

Asfandyar SikandarLaura FranzOkke MelseIris AntesJesko Koehnke
Published in: Journal of the American Chemical Society (2019)
The ribosomally synthesized and post-translationally modified peptide (RiPP) bottromycin A2 possesses potent antimicrobial activity. Its biosynthesis involves the enzymatic formation of a macroamidine, a process previously suggested to require the concerted efforts of a YcaO enzyme (PurCD) and an amidohydrolase (PurAH) in vivo. In vitro, PurCD alone is sufficient to catalyze formation of the macroamidine, but the process is reversible. We set out to probe the role of PurAH in macroamidine formation in vitro. We demonstrate that PurAH is highly selective for macroamidine-containing precursor peptides and cleaves C-terminal of a thiazoline, thus removing the follower peptide. After follower cleavage, macroamidine formation is irreversible, indicating PurAH as the gatekeeper of bottromycin biosynthesis. The structure of PurAH suggests residues involved in catalysis, which were probed through mutagenesis.
Keyphrases
  • cell wall
  • crispr cas
  • hydrogen peroxide
  • nitric oxide
  • dna binding
  • anti inflammatory
  • single molecule
  • transcription factor