Login / Signup

Driving a Microswimmer with Wall-Induced Flow.

Clément MoreauKenta Ishimoto
Published in: Micromachines (2021)
Active walls such as cilia and bacteria carpets generate background flows that can influence the trajectories of microswimmers moving nearby. Recent advances in artificial magnetic cilia carpets offer the potentiality to use a similar wall-generated background flow to steer bio-hybrid microrobots. In this paper, we provide some ground theoretical and numerical work assessing the viability of this novel means of swimmer guidance by setting up a simple model of a spherical swimmer in an oscillatory flow and analysing it from the control theory viewpoint. We show a property of local controllability around the reference free trajectories and investigate the bang-bang structure of the control for time-optimal trajectories, with an estimation of the minimal time for suitable objectives. By direct simulation, we have demonstrated that the wall actuation can improve the wall-following transport by nearly 50%, which can be interpreted by synchronous flow structure. Although an open-loop control with a periodic bang-bang actuation loses some robustness and effectiveness, a feedback control is found to improve its robustness and effective transport, even with hydrodynamic wall-swimmer interactions. The results shed light on the potentialities of flow control and open the way to future experiments on swimmer guidance.
Keyphrases
  • depressive symptoms
  • randomized controlled trial
  • systematic review
  • minimally invasive
  • mass spectrometry
  • high glucose
  • transcription factor
  • current status
  • molecularly imprinted
  • high resolution