Login / Signup

Differential Expression Proteins Contribute to Race-Specific Resistant Ability in Rice (Oryza sativa L.).

Shiwei MaShoukai LinMenglin WangYang ZouHuan TaoLiping LinLina ZhangKangjing LiangYufang AiHuaqin He
Published in: Plants (Basel, Switzerland) (2019)
Rice blast, caused by the fungus, Magnaporthe grisea (M. grisea), lead to the decrease of rice yields widely and destructively, threatening global food security. Although many resistant genes had been isolated and identified in various rice varieties, it is still not enough to clearly understand the mechanism of race-specific resistant ability in rice, especially on the protein level. In this research, proteomic methods were employed to analyze the differentially expressed proteins (DEPs) in susceptible rice variety CO39 and its two near isogenic lines (NILs), CN-4a and CN-4b, in response to the infection of two isolates with different pathogenicity, GUY11 and 81278ZB15. A total of 50 DEPs with more than 1.5-fold reproducible change were identified. At 24 and 48 hpi of GUY11, 32 and 16 proteins in CN-4b were up-regulated, among which 16 and five were paralleled with the expression of their corresponding RNAs. Moreover, 13 of 50 DEPs were reported to be induced by M. grisea in previous publications. Considering the phenotypes of the three tested rice varieties, we found that 21 and 23 up-regulated proteins were responsible for the rice resistant ability to the two different blast isolates, 81278ZB15 and GUY11, respectively. Two distinct branches corresponding to GUY11 and 81278ZB15 were observed in the expression and function of the module cluster of DEPs, illuminating that the DEPs could be responsible for race-specific resistant ability in rice. In other words, DEPs in rice are involved in different patterns and functional modules' response to different pathogenic race infection, inducing race-specific resistant ability in rice.
Keyphrases
  • poor prognosis
  • transcription factor
  • gene expression
  • escherichia coli
  • lymph node metastasis
  • genome wide
  • public health
  • climate change
  • pseudomonas aeruginosa
  • long non coding rna
  • biofilm formation