Hybrid Micro-/Nanoprotein Platform Provides Endocrine-like and Extracellular Matrix-like Cell Delivery of Growth Factors.
Hèctor López-LagunaPenelope M TsimbouriVineetha JayawarnaIoanna RigouNaroa SernaEric Voltà-DuránUgutz UnzuetaManuel Salmeron-SanchezEsther VazquezMatthew John DalbyAntonio VillaverdePublished in: ACS applied materials & interfaces (2024)
Protein materials are versatile tools in diverse biomedical fields. Among them, artificial secretory granules (SGs), mimicking those from the endocrine system, act as mechanically stable reservoirs for the sustained release of proteins as oligomeric functional nanoparticles. Only validated in oncology, the physicochemical properties of SGs, along with their combined drug-releasing and scaffolding abilities, make them suitable as smart topographies in regenerative medicine for the prolonged delivery of growth factors (GFs). Thus, considering the need for novel, safe, and cost-effective materials to present GFs, in this study, we aimed to biofabricate a protein platform combining both endocrine-like and extracellular matrix fibronectin-derived (ECM-FN) systems. This approach is based on the sustained delivery of a nanostructured histidine-tagged version of human fibroblast growth factor 2. The GF is presented onto polymeric surfaces, interacting with FN to spontaneously generate nanonetworks that absorb and present the GF in the solid state, to modulate mesenchymal stromal cell (MSC) behavior. The results show that SGs-based topographies trigger high rates of MSCs proliferation while preventing differentiation. While this could be useful in cell therapy manufacture demanding large numbers of unspecialized MSCs, it fully validates the hybrid platform as a convenient setup for the design of biologically active hybrid surfaces and in tissue engineering for the controlled manipulation of mammalian cell growth.
Keyphrases
- extracellular matrix
- cell therapy
- mesenchymal stem cells
- stem cells
- tissue engineering
- solid state
- high throughput
- bone marrow
- single cell
- umbilical cord
- drug delivery
- biofilm formation
- protein protein
- signaling pathway
- amino acid
- binding protein
- staphylococcus aureus
- cancer therapy
- escherichia coli
- drug induced
- induced pluripotent stem cells
- pluripotent stem cells
- pseudomonas aeruginosa
- type iii