Prevention by Dietary Polyphenols (Resveratrol, Quercetin, Apigenin) Against 7-Ketocholesterol-Induced Oxiapoptophagy in Neuronal N2a Cells: Potential Interest for the Treatment of Neurodegenerative and Age-Related Diseases.
Aline YammineAmira ZarroukThomas NuryAnne VejuxNorbert LatruffeDominique Vervandier-FasseurMohammad SamadiJohn James MackrillHélène Greige-GergesLizette AuezovaGérard LizardPublished in: Cells (2020)
The Mediterranean diet is associated with health benefits due to bioactive compounds such as polyphenols. The biological activities of three polyphenols (quercetin (QCT), resveratrol (RSV), apigenin (API)) were evaluated in mouse neuronal N2a cells in the presence of 7-ketocholesterol (7KC), a major cholesterol oxidation product increased in patients with age-related diseases, including neurodegenerative disorders. In N2a cells, 7KC (50 µM; 48 h) induces cytotoxic effects characterized by an induction of cell death. When associated with RSV, QCT and API (3.125; 6.25 µM), 7KC-induced toxicity was reduced. The ability of QCT, RSV and API to prevent 7KC-induced oxidative stress was characterized by a decrease in reactive oxygen species (ROS) production in whole cells and at the mitochondrial level; by an attenuation of the increase in the level and activity of catalase; by attenuating the decrease in the expression, level and activity of glutathione peroxidase 1 (GPx1); by normalizing the expression, level and activity of superoxide dismutases 1 and 2 (SOD1, SOD2); and by reducing the decrease in the expression of nuclear erythroid 2-like factor 2 (Nrf2) which regulates antioxidant genes. QCT, RSV and API also prevented mitochondrial dysfunction in 7KC-treated cells by counteracting the loss of mitochondrial membrane potential (ΨΔm) and attenuating the decreased gene expression and/or protein level of AMP-activated protein kinase α (AMPKα), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) implicated in mitochondrial biogenesis. At the peroxisomal level, QCT, RSV and API prevented the impact of 7KC by counteracting the decrease in ATP binding cassette subfamily D member (ABCD)3 (a peroxisomal mass marker) at the protein and mRNA levels, as well as the decreased expresssion of genes associated with peroxisomal biogenesis (Pex13, Pex14) and peroxisomal β-oxidation (Abcd1, Acox1, Mfp2, Thiolase A). The 7KC-induced decrease in ABCD1 and multifunctional enzyme type 2 (MFP2), two proteins involved in peroxisomal β-oxidation, was also attenuated by RSV, QCT and API. 7KC-induced cell death, which has characteristics of apoptosis (cells with fragmented and/or condensed nuclei; cleaved caspase-3; Poly(ADP-ribose) polymerase (PARP) fragmentation) and autophagy (cells with monodansyl cadaverine positive vacuoles; activation of microtubule associated protein 1 light chain 3-I (LC3-I) to LC3-II, was also strongly attenuated by RSV, QCT and API. Thus, in N2a cells, 7KC induces a mode of cell death by oxiapoptophagy, including criteria of OXIdative stress, APOPTOsis and autoPHAGY, associated with mitochondrial and peroxisomal dysfunction, which is counteracted by RSV, QCT, and API reinforcing the interest for these polyphenols in prevention of diseases associated with increased 7KC levels.
Keyphrases
- cell cycle arrest
- cell death
- oxidative stress
- induced apoptosis
- endoplasmic reticulum stress
- diabetic rats
- gene expression
- pi k akt
- signaling pathway
- poor prognosis
- reactive oxygen species
- respiratory syncytial virus
- hydrogen peroxide
- healthcare
- health information
- cell proliferation
- ischemia reperfusion injury
- long non coding rna
- mass spectrometry
- public health
- dna methylation
- mental health
- skeletal muscle
- respiratory tract
- social media
- dna binding
- brain injury
- solid phase extraction
- endothelial cells
- heat shock protein
- blood brain barrier
- human health
- anti inflammatory