Mapping the Binding Energy of Layered Crystals to Macroscopic Observables.
Mohsen Moazzami-GudarziSeyed Hamed AboutalebiPublished in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2022)
Van der Waals (vdW) integration of two dimensional (2D) crystals into functional heterostructures emerges as a powerful tool to design new materials with fine-tuned physical properties at an unprecedented precision. The intermolecular forces governing the assembly of vdW heterostructures are investigated by first-principles models, yet translating the outcome of these models to macroscopic observables in layered crystals is missing. Establishing this connection is, therefore, crucial for ultimately designing advanced materials of choice-tailoring the composition to functional device properties. Herein, components from both vdW and non-vdW forces are integrated to build a comprehensive framework that can quantitatively describe the dynamics of these forces in action. Specifically, it is shown that the optical band gap of layered crystals possesses a peculiar ionic character that works as a quantitative indicator of non-vdW forces. Using these two components, it is then described why only a narrow range of exfoliation energies for this class of materials is observed. These findings unlock the microscopic origin of universal binding energy in layered crystals and provide a general protocol to identify and synthesize new crystals to regulate vdW coupling in the next generation of heterostructures.