Login / Signup

New insights into in vivo gastroduodenal digestion of oil-in-water emulsions: gastric stability and in vitro digestion modeling.

Nassim RaoufiAiqian YeJianzhong Han
Published in: Critical reviews in food science and nutrition (2021)
In this paper, effect of emulsion stability on gastroduodenal emptying/secretion was reviewed and differentiated. Moreover, novel perspectives on physiology of gastric lumen, duodenum, and gall bladder were achieved using mathematical models, being useful for designing artificial digestive systems. In this regard, numerical data for dynamic gastric emptying/secretion were offered for gastric-stable and gastric-unstable emulsion intakes. It was shown that alterations in human gastric and duodenal volume follow, respectively, linear and sinusoidal curves, with high correlation coefficients (r2 > 0.93). For both emulsions, about 30-40 mL ingesta discharged rapidly from stomach upon ingestion; However, further gastric emptying was regulated for the rest of digestion period, so that 0.1 mL/min oil was passing through duodenum. Intragastric evacuation of both emulsions started with a lag phase during which stomach stored secretions incrementally by slow gastric discharge. Lag phase ended with fat layering, when emptying considerably enhanced. This reduction was gradual for stable emulsion while unstable emulsion experienced a rapid emptying before slow declining trend. Along with initial gastric emptying, 87% of gallbladder content discharged into duodenum, prolonged up to the gradual reduction phase of stomach. Supplementary investigations are needed to quantify gastroduodenal secretions, particularly pepsin and pancreas in response to emulsion ingesta.
Keyphrases
  • endothelial cells
  • spinal cord injury
  • adipose tissue
  • machine learning
  • transcription factor
  • big data
  • quantum dots