Login / Signup

EBV-miR-BART12 inhibits cell migration and proliferation by targeting Snail expression in EBV-associated gastric cancer.

Jun LiYan ZhangJuanjuan LiuQianzhu ShiWen LiuBing Luo PhD
Published in: Archives of virology (2021)
Epstein-Barr virus (EBV) was the first oncovirus found to encode microRNAs. In EBV-associated gastric cancer (EBVaGC), EBV-encoded BamHI-A rightward transcript microRNAs (BARTs) are highly expressed. However, the role of BARTs in EBVaGC remains obscure. In this study, we found that EBV-miR-BART12 (miR-BART12) inhibits cell proliferation and migration. Zinc finger protein SNAI1 (Snail) is an important epithelial-mesenchymal transition (EMT) inducer, and overexpression of Snail is closely associated with cancer metastasis. Here, we report that Snail expression in EBVaGC cells is lower than in EBV-negative gastric cancer (EBVnGC) cells. A dual luciferase reporter assay showed that miR-BART12 targets Snail directly by interacting with its 3'-UTR. A CHX chase assay revealed that miR-BART12 accelerates the degradation of Snail. Furthermore, we found that miR-BART12 can regulate the expression of EMT-related genes. Flow cytometry analysis showed that transfection with miR-BART12 induced G2/M phase arrest and promoted cell apoptosis. In summary, the results of our study have suggested a new mechanism by which BARTs can repress cell proliferation and migration in gastric cancer.
Keyphrases