Login / Signup

Reprogramming of breast tumor-associated macrophages with modulation of arginine metabolism.

Veani FernandoXunzhen ZhengVandana SharmaSaori Furuta
Published in: bioRxiv : the preprint server for biology (2023)
HER2+ breast tumors have abundant immune-suppressive cells, including M2-type tumor associated macrophages (TAMs). While TAMs consist of the immune-stimulatory M1-type and immune-suppressive M2-type, M1/M2-TAM ratio is reduced in immune-suppressive tumors, contributing to their immunotherapy refractoriness. M1 vs. M2-TAM formation depends on differential arginine metabolism, where M1-TAMs convert arginine to nitric oxide (NO) and M2- TAMs convert arginine to polyamines (PAs). We hypothesize that such distinct arginine metabolism in M1- vs M2-TAMs is attributed to different availability of BH 4 (NO synthase cofactor) and that its replenishment would reprogram M2-TAMs to M1-TAMs. Recently, we reported that sepiapterin (SEP), the endogenous BH 4 precursor, elevates the expression of M1- TAM markers within HER2+ tumors. Here, we show that SEP restores BH 4 levels in M2-TAMs, which then redirects arginine metabolism to NO synthesis and converts M2-TAMs to M1-TAMs. The reprogrammed TAMs exhibit full-fledged capabilities of antigen presentation and induction of effector T cells to trigger immunogenic cell death of HER2+ cancer cells. This study substantiates the utility of SEP in metabolic shift of HER2+ breast tumor microenvironment as a novel immunotherapeutic strategy.
Keyphrases
  • nitric oxide
  • cell death
  • nitric oxide synthase
  • poor prognosis
  • cell cycle arrest
  • hydrogen peroxide
  • long non coding rna
  • signaling pathway
  • regulatory t cells
  • cell proliferation
  • pi k akt