Abrogation of IFN-γ Signaling May not Worsen Sensitivity to PD-1/PD-L1 Blockade.
Julie VackovaAdrianna PiatakovaIngrid PolákováMichal SmahelPublished in: International journal of molecular sciences (2020)
Programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) blockade is a promising therapy for various cancer types, but most patients are still resistant. Therefore, a larger number of predictive biomarkers is necessary. In this study, we assessed whether a loss-of-function mutation of the interferon (IFN)-γ receptor 1 (IFNGR1) in tumor cells can interfere with anti-PD-L1 therapy. For this purpose, we used the mouse oncogenic TC-1 cell line expressing PD-L1 and major histocompatibility complex class I (MHC-I) molecules and its TC-1/A9 clone with reversibly downregulated PD-L1 and MHC-I expression. Using the CRISPR/Cas9 system, we generated cells with deactivated IFNGR1 (TC-1/dIfngr1 and TC-1/A9/dIfngr1). In tumors, IFNGR1 deactivation did not lead to PD-L1 or MHC-I reduction on tumor cells. From potential inducers, mainly IFN-α and IFN-β enhanced PD-L1 and MHC-I expression on TC-1/dIfngr1 and TC-1/A9/dIfngr1 cells in vitro. Neutralization of the IFN-α/IFN-β receptor confirmed the effect of these cytokines in vivo. Combined immunotherapy with PD-L1 blockade and DNA vaccination showed that IFNGR1 deactivation did not reduce tumor sensitivity to anti-PD-L1. Thus, the impairment of IFN-γ signaling may not be sufficient for PD-L1 and MHC-I reduction on tumor cells and resistance to PD-L1 blockade, and thus should not be used as a single predictive marker for anti-PD-1/PD-L1 cancer therapy.
Keyphrases
- dendritic cells
- immune response
- induced apoptosis
- crispr cas
- poor prognosis
- cancer therapy
- end stage renal disease
- binding protein
- cell cycle arrest
- chronic kidney disease
- drug delivery
- newly diagnosed
- squamous cell carcinoma
- ejection fraction
- peritoneal dialysis
- prognostic factors
- oxidative stress
- cell death
- papillary thyroid
- single molecule
- small molecule
- cell free
- circulating tumor
- long non coding rna
- amino acid