LncRNA-FEZF1-AS1 Promotes Tumor Proliferation and Metastasis in Colorectal Cancer by Regulating PKM2 Signaling.
Zehua BianJiwei ZhangMin LiYuyang FengXue WangJia ZhangSurui YaoGuoying JinJun DuWeifeng HanYuan YinShenglin HuangBojian FeiJian ZouZhaohui HuangPublished in: Clinical cancer research : an official journal of the American Association for Cancer Research (2018)
Purpose: Long non-coding RNAs (lncRNAs) play key roles in human cancers. Here, FEZF1-AS1, a highly overexpressed lncRNA in colorectal cancer, was identified by lncRNA microarrays. We aimed to explore the roles and possible molecular mechanisms of FEZF1-AS1 in colorectal cancer.Experimental Design: LncRNA expression in colorectal cancer tissues was measured by lncRNA microarray and qRT-PCR. The functional roles of FEZF1-AS1 in colorectal cancer were demonstrated by a series of in vitro and in vivo experiments. RNA pull-down, RNA immunoprecipitation and luciferase analyses were used to demonstrate the potential mechanisms of FEZF1-AS1.Results: We identified a series of differentially expressed lncRNAs in colorectal cancer using lncRNA microarrays, and revealed that FEZF1-AS1 is one of the most overexpressed. Further validation in two expanded colorectal cancer cohorts confirmed the upregulation of FEZF1-AS1 in colorectal cancer, and revealed that increased FEZF1-AS1 expression is associated with poor survival. Functional assays revealed that FEZF1-AS1 promotes colorectal cancer cell proliferation and metastasis. Mechanistically, FEZF1-AS1 could bind and increase the stability of the pyruvate kinase 2 (PKM2) protein, resulting in increased cytoplasmic and nuclear PKM2 levels. Increased cytoplasmic PKM2 promoted pyruvate kinase activity and lactate production (aerobic glycolysis), whereas FEZF1-AS1-induced nuclear PKM2 upregulation further activated STAT3 signaling. In addition, PKM2 was upregulated in colorectal cancer tissues and correlated with FEZF1-AS1 expression and patient survival.Conclusions: Together, these data provide mechanistic insights into the regulation of FEZF1-AS1 on both STAT3 signaling and glycolysis by binding PKM2 and increasing its stability. Clin Cancer Res; 24(19); 4808-19. ©2018 AACR.