Visible light optical coherence tomography (VIS-OCT) of the human retina is an emerging imaging modality that uses shorter wavelengths in visible light range than conventional near-infrared (NIR) light. It provides one-micron level axial resolution to better separate stratified retinal layers, as well as microvascular oximetry. However, due to the practical limitation of laser safety and comfort, the permissible illumination power is much lower than NIR OCT, which can be challenging to obtain high-quality VIS-OCT images and subsequent image analysis. Therefore, improving VIS-OCT image quality by denoising is an essential step in the overall workflow in VIS-OCT clinical applications. In this paper, we provide the first VIS-OCT retinal image dataset from normal eyes, including retinal layer annotation and "noisy-clean" image pairs. We propose an efficient co-learning deep learning framework for parallel self-denoising and segmentation simultaneously. Both tasks synergize within the same network and improve each other's performance. The significant improvement of segmentation (2% higher Dice coefficient compared to segmentation-only process) for ganglion cell layer (GCL), inner plexiform layer (IPL) and inner nuclear layer (INL) is observed when available annotation drops to 25%, suggesting an annotation-efficient training. We also showed that the denoising model trained on our dataset generalizes well for a different scanning protocol.
Keyphrases
- optical coherence tomography
- deep learning
- convolutional neural network
- visible light
- optic nerve
- diabetic retinopathy
- artificial intelligence
- image quality
- endothelial cells
- machine learning
- high resolution
- photodynamic therapy
- randomized controlled trial
- computed tomography
- induced pluripotent stem cells
- rna seq
- mesenchymal stem cells
- working memory
- mass spectrometry
- fluorescence imaging
- neuropathic pain
- drug release
- spinal cord