Login / Signup

Comprehensive determination of fatty acids in real samples without derivatization by DMU-SPME-GC methods.

Yun-Jiao MaPing LiBei-Wei ZhuMing DuXian-Bing Xu
Published in: Food research international (Ottawa, Ont.) (2024)
The comprehensive determination of fatty acids without derivatization, including short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs) and long-chain fatty acids (LCFAs), is a big challenge but powerful for lipidomics in biology, food, and environment. Herein, the dual mode unity solid-phase microextraction (DMU-SPME) combined with gas chromatography-flame ionization detector (GC-FID) or mass spectrometry (MS) was proposed as a powerful method for the determination of comprehensive free fatty acids in real samples. Under the optimized DMU-SPME conditions, the proposed method has good linearity (R 2  ≥ 0.994) and low limits of determination (0.01-0.14 mg/L). In the stability analysis, the intra-day relative standard deviation was 1.39-12.43 %, and the inter-day relative standard deviation was 2.84-10.79 %. The recoveries of selected 10 fatty acids in real samples ranged from 90.18 % to 110.75 %, indicating that the method has good accuracy. Fatty acids ranging from C2 to C22 were detected in real samples by the untargeted determination method of DMU-SPME combined with gas chromatography-mass spectrometry (GC-MS). The DMU-SPME method proposed in this study can be used for lipid metabolism analysis and free fatty acid determination in the fields of biology, food, and environment.
Keyphrases