Login / Signup

Internal Duplications of DH, JH, and C Region Genes Create an Unusual IgH Gene Locus in Cattle.

Li MaTong QinDan ChuXueqian ChengJing WangXifeng WangPeng WangHaitang HanLiming RenRobert AitkenLennart HammarströmNing LiYaofeng Zhao
Published in: Journal of immunology (Baltimore, Md. : 1950) (2016)
It has been suspected for many years that cattle possess two functional IgH gene loci, located on Bos taurus autosome (BTA) 21 and BTA11, respectively. In this study, based on fluorescence in situ hybridization and additional experiments, we showed that all functional bovine IgH genes were located on BTA21, and only a truncated μCH2 exon was present on BTA11. By sequencing of seven bacterial artificial chromosome clones screened from a Hostein cow bacterial artificial chromosome library, we generated a 678-kb continuous genomic sequence covering the bovine IGHV, IGHD, IGHJ, and IGHC genes, which are organized as IGHVn-IGHDn-IGHJn-IGHM1-(IGHDP-IGHV3-IGHDn)3-IGHJn-IGHM2-IGHD-IGHG3-IGHG1-IGHG2-IGHE-IGHA. Although both of two functional IGHM genes, IGHM1 and IGHM2, can be expressed via independent VDJ recombinations, the IGHM2 can also be expressed through class switch recombination. Likely because more IGHD segments can be involved in the expression of IGHM2, the IGHM2 gene was shown to be dominantly expressed in most tissues throughout different developmental stages. Based on the length and identity of the coding sequence, the 23 IGHD segments identified in the locus could be divided into nine subgroups (termed IGHD1 to IGHD9). Except two members of IGHD9 (14 nt in size), all other functional IGHD segments are longer than 30 nt, with the IGHD8 gene (149 bp) to be the longest. These remarkably long germline IGHD segments play a pivotal role in generating the exceptionally great H chain CDR 3 length variability in cattle.
Keyphrases
  • genome wide
  • genome wide identification
  • copy number
  • genome wide analysis
  • dna methylation
  • transcription factor
  • dna repair
  • bioinformatics analysis
  • poor prognosis
  • gene expression
  • oxidative stress
  • long non coding rna