Delivery of the VIVIT Peptide to Human Glioma Cells to Interfere with Calcineurin-NFAT Signaling.

Aleksandra Ellert-MiklaszewskaAgata SzymczykKatarzyna PoleszakBozena Kaminska
Published in: Molecules (Basel, Switzerland) (2021)
The activation of NFAT (nuclear factor of activated T cells) transcription factors by calcium-dependent phosphatase calcineurin is a key step in controlling T cell activation and plays a vital role during carcinogenesis. NFATs are overexpressed in many cancers, including the most common primary brain tumor, gliomas. In the present study, we demonstrate the expression of NFATs and NFAT-driven transcription in several human glioma cells. We used a VIVIT peptide for interference in calcineurin binding to NFAT via a conserved PxIxIT motif. VIVIT was expressed as a fusion protein with a green fluorescent protein (VIVIT-GFP) or conjugated to cell-penetrating peptides (CPP), Sim-2 or 11R. We analyzed the NFAT expression, phosphorylation, subcellular localization and their transcriptional activity in cells treated with peptides. Overexpression of VIVIT-GFP decreased the NFAT-driven activity and inhibited the transcription of endogenous NFAT-target genes. These effects were not reproduced with synthetic peptides: Sim2-VIVIT did not show any activity, and 11R-VIVIT did not inhibit NFAT signaling in glioma cells. The presence of two calcineurin docking sites in NFATc3 might require dual-specificity blocking peptides. The cell-penetrating peptides Sim-2 or 11R linked to VIVIT did not improve its action making it unsuitable for evaluating NFAT dependent events in glioma cells with high expression of NFATc3.