Login / Signup

The Potential Relevance of PnDREBs to Panax notoginseng Nitrogen Sensitiveness.

Pengguo XiaYan ZhangXuemin Zhang
Published in: Biochemical genetics (2023)
The dehydration response element-binding (DREB) transcription factor is a subfamily of AP2/ERF. It actively responds to various abiotic stresses in plants. As one of the representative plants, Panax notoginseng is sensitive to Nitrogen (N). Here, bioinformatics analysis, the identification, chromosomal location, phylogeny, structure, cis-acting elements, and collinearity of PnDREBs were analyzed. In addition, the expression levels of PnDREBs were analyzed by quantitative reverse transcription PCR. In this study, 54 PnDREBs were identified and defined as PnDREB1 to PnDREB54. They were divided into 6 subfamilies (A1-A6). And 44 PnDREBs were irregularly distributed on 10 of 12 chromosomes. Each group showed specific motifs and exon-intron structures. By predicting cis-acting elements, the PnDREBs may participate in biotic stress, abiotic stress, and hormone induction. Collinear analysis showed that fragment duplication events were beneficial to the amplification and evolution of PnDREB members. The expression of PnDREBs showed obvious tissue specificity in its roots, flowers, and leaves. In addition, under the action of ammonium nitrogen and nitrate nitrogen at the 15 mM level, the level of PnDREB genes expression in roots varied to different degrees. In this study, we identified and characterized PnDREBs for the first time, and analyzed that PnDREBs may be related to the response of P. Notoginseng to N sensitiveness. The results of this study lay a foundation for further research on the function of PnDREBs in P. Notoginseng.
Keyphrases