Remote Ischemia Postconditioning Mitigates Hippocampal Neuron Impairment by Modulating Cav1.2-CaMKIIα-Aromatase Signaling After Global Cerebral Ischemia in Ovariectomized Rats.
Lu WangFujia GaoLingling ChenWuxiang SunHuiyu LiuWei YangXin ZhangJing BaiRuimin WangPublished in: Molecular neurobiology (2024)
Brain-derived estrogen (BDE2) is gaining attention as an endogenous neurotransmitter. Recent research has revealed that selectively removing the aromatase gene, the pivotal enzyme responsible for BDE2 synthesis, in forebrain neurons or astrocytes can lead to synaptic loss and cognitive impairment. It is worth noting that remote ischemia post-conditioning (RIP), a non-invasive technique, has been shown to activate natural protective mechanisms against severe ischemic events. The aim of our study was to investigate whether RIP triggers aromatase-BDE2 signaling, shedding light on its neuroprotective mechanisms after global cerebral ischemia (GCI) in ovariectomized rats. Our findings are as follows: (1) RIP was effective in mitigating ischemic damage in hippocampal CA1 neurons and improved cognitive function after GCI. This was partially due to increased Aro-BDE2 signaling in CA1 neurons. (2) RIP intervention efficiently enhanced pro-survival kinase pathways, such as AKT, ERK1/2, CREB, and suppressed CaMKIIα signaling in CA1 astrocytes induced by GCI. Remarkably, inhibiting CaMKIIα activity led to elevated Aro-BDE2 levels and replicated the benefits of RIP. (3) We also identified the positive mediation of Cav1.2, an LVGCC calcium channel, on CaMKIIα-Aro/BDE2 pathway response to RIP intervention. (4) Significantly, either RIP or CaMKIIα inhibition was found to alleviate reactive astrogliosis, which was accompanied by increased pro-survival A2-astrocyte protein S100A10 and decreased pro-death A1-astrocyte marker C3 levels. In summary, our study provides compelling evidence that Aro-BDE2 signaling is a critical target for the reparative effects of RIP following ischemic insult. This effect may be mediated through the CaV1.2-CaMKIIα signaling pathway, in collaboration with astrocyte-neuron interactions, thereby maintaining calcium homeostasis in the neuronal microenvironment and reducing neuronal damage after ischemia.
Keyphrases
- cerebral ischemia
- subarachnoid hemorrhage
- signaling pathway
- blood brain barrier
- brain injury
- randomized controlled trial
- spinal cord
- cognitive impairment
- oxidative stress
- cell proliferation
- pi k akt
- stem cells
- spinal cord injury
- radiation therapy
- genome wide
- early onset
- anti inflammatory
- amino acid
- radiation induced
- tyrosine kinase
- genome wide identification