Login / Signup

The Effect of Dietary Lycopene Supplementation on Drip Loss during Storage of Lamb Meat by iTRAQ Analysis.

Bo WangChen-Chen XuCe LiuYang-Hua QuHao ZhangHai-Ling Luo
Published in: Antioxidants (Basel, Switzerland) (2021)
This study was designed to investigate the impact of dietary lycopene (antioxidant extracted from tomato) supplementation on postmortem antioxidant capacity, drip loss and protein expression profiles of lamb meat during storage. Thirty male Hu lambs were randomly divided into three treatment groups and housed in individual pens and received 0, 200 or 400 mg·kg-1 lycopene in their diet, respectively. All lambs were slaughtered after 3 months of fattening, and the longissimus thoracis (LT) muscle was collected for analyses. The results indicated that drip loss of LT muscle increased with storage days (P < 0.05). After storage for 7 days, significantly lower drip loss of meat was found in fed the lycopene-supplemented diet (P < 0.05). Dietary lycopene supplementation increased the activity of antioxidant enzymes (total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT)) (P < 0.05) and decreased the thiobarbituric acid reactive substance (TBARS) and carbonyl contents (P < 0.05). During the storage period (days 0, 5 and 7), a number of differentially abundant proteins (DAPs), including oxidases, metabolic enzymes, calcium channels and structural proteins, were identified based on iTRAQ data, with roles predominantly in carbon metabolism, oxidative phosphorylation, cardiac muscle contraction and proteasome pathways, and which contribute to decreased drip loss of lamb meat during storage. It can be concluded that dietary lycopene supplementation increased antioxidant capacity after slaughter, and the decreased drip loss during postmortem storage might occur by changing the expression of proteins related to enzyme activity and cellular structure in lamb muscle.
Keyphrases
  • skeletal muscle
  • physical activity
  • weight loss
  • heart failure
  • left ventricular
  • binding protein
  • atrial fibrillation
  • african american
  • protein kinase
  • smooth muscle