Login / Signup

Efficient biocatalyst of L-DOPA with Escherichia coli expressing a tyrosine phenol-lyase mutant from Kluyvera intermedia.

Wei YuanShuang ZhongYanming XiaoZhao WangJie Sun
Published in: Applied biochemistry and biotechnology (2019)
L-DOPA (L-dihydroxyphenylalanine) is a promising drug for Parkinson's disease and thereby has a growing annual demand. Tyrosine phenol-lyase (TPL)-based catalysis is considered to be a low-cost yet efficient route for biosynthesis of L-DOPA. TPL is a tetrameric enzyme that catalyzes the synthesis of L-DOPA from pyrocatechol, sodium pyruvate, and ammonium acetate. The implementation of TPL for L-DOPA production has been hampered and the need for the most efficient TPL source with higher L-DOPA production and substrate conversion rate is prevailing. This study involves identifying a novel TPL from Kluyvera intermedia (Ki-TPL) and displayed a robust expression in Escherichia coli. The recombinant strain YW000 carrying Ki-TPL proved strong catalytic activity with a highest L-DOPA yield compared with 16 other TPLs from different organisms. With a further aim to improve this efficiency, random mutagenesis of Ki-TPL was performed and a mutant namely YW021 was obtained. The whole cells of YW021 as biocatalyst yielded 150.4 g L-1 of L-DOPA with a 99.99 % of pyrocatechol conversion at the optimum condition of pH 8.0 at 25 °C, which is the highest level reported to date. Further, the homology modeling and structural analysis revealed the mutant residues responsible for the extensive L-DOPA biosynthesis.
Keyphrases