Login / Signup

Highly Selective, Amine-Derived Cannabinoid Receptor 2 Probes.

Matthias V WestphalRoman C SarottElisabeth A ZirwesAnja OsterwaldWolfgang GubaChristoph UllmerUwe GretherErick M Carreira
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
The endocannabinoid (eCB) system is implied in various human diseases ranging from central nervous system to autoimmune disorders. Cannabinoid receptor 2 (CB2 R) is an integral component of the eCB system. Yet, the downstream effects elicited by this G protein-coupled receptor upon binding of endogenous or synthetic ligands are insufficiently understood-likely due to the limited arsenal of reliable biological and chemical tools. Herein, we report the design and synthesis of CB2 R-selective cannabinoids along with their in vitro pharmacological characterization (binding and functional studies). They combine structural features of HU-308 and AM841 to give chimeric ligands that emerge as potent CB2 R agonists with high selectivity over the closely related cannabinoid receptor 1 (CB1 R). The synthesis work includes convenient preparation of substituted resorcinols often found in cannabinoids. The utility of the synthetic cannabinoids in this study is showcased by preparation of the most selective high-affinity fluorescent probe for CB2 R to date.
Keyphrases