Login / Signup

The zinc finger proteins ZC3H20 and ZC3H21 stabilise mRNAs encoding membrane proteins and mitochondrial proteins in insect-form Trypanosoma brucei.

Bin LiuKevin Kamanyi MaruchaChristine Clayton
Published in: Molecular microbiology (2019)
ZC3H20 and ZC3H21 are related trypanosome proteins with two C(x)8 C(x)5 C(x)3 H zinc finger motifs. ZC3H20 is present at a low level in replicating mammalian-infective bloodstream forms, but becomes more abundant when they undergo growth arrest at high density; ZC3H21 appears only in the procyclic form of the parasite, which infects Tsetse flies. Each protein binds to several hundred mRNAs, with overlapping but not identical specificities. Both increase expression of bound mRNAs, probably through recruitment of the MKT1-PBP1 complex. At least 28 of the bound mRNAs decrease after depletion of ZC3H20, or of ZC3H20 and ZC3H21 together; their products include procyclic-specific proteins of the plasma membrane and energy metabolism. Simultaneous depletion of ZC3H20 and ZC3H21 causes procyclic forms to shrink and stop growing; in addition to decreases in target mRNAs, there are other changes suggestive of loss of developmental regulation. The bloodstream-form-specific protein RBP10 controls ZC3H20 and ZC3H21 expression. Interestingly, some ZC3H20/21 target mRNAs also bind to and are repressed by RBP10, allowing for dynamic regulation as RBP10 decreases and ZC3H20 and ZC3H21 increase during differentiation.
Keyphrases
  • poor prognosis
  • high density
  • oxidative stress
  • small molecule
  • cell proliferation
  • long non coding rna
  • amino acid
  • protein protein
  • gram negative
  • toxoplasma gondii