Nanoscale implant anchorage aided by cement line deposition into titanium dioxide nanotubes.
Kathryn GrandfieldDakota Marie BinkleyBirol AyZhen Mei LiuXiaoyue WangJohn E DaviesPublished in: Journal of biomedical materials research. Part A (2023)
The success of titanium dental implants relies on osseointegration, the load-bearing connection between bone tissue and the device that, in contact osteogenesis, comprises the deposition of bony cement line matrix onto the implant surface. Titanium dioxide nanotubes (NTs) are considered a promising surface for improved osseointegration, yet the mechanisms of cement line integration with such features remains elusive. Herein, we illustrate cement line deposition into NTs on the surface of titanium implants with two underlaying microstructures: a machined surface or a blasted/acid etched surface placed in the tibiae of Wistar rats. After retrieval, scanning electron microscopy of tissue reflected from the implant surface indicated minimal incursion of the cement line matrix into the NTs. To investigate this further, focused ion beam was utilized to prepare cross-sectional samples that could be characterized using scanning transmission electron microscopy. The cement line matrix covered NTs regardless of underlying microstructure, which was further confirmed by elemental analysis. In some instances, cement line infiltration into the NTs was noted, which reveals a mechanism of nanoscale anchorage. This study is the first to demonstrate cement line deposition into titanium NTs, suggesting nano-anchorage as a mechanism for the success of the NT modified surfaces in vivo.