Login / Signup

Design, Synthesis, and Cytotoxic Evaluation of Certain 7-Chloro-4-(piperazin-1-yl)quinoline Derivatives as VEGFR-II Inhibitors.

Mohamed Farouk HamissaAida M Abd El-Sattar El-AzzounyFatma Abdel-Fattah RagabMohamed Farouk Hamissa
Published in: Archiv der Pharmazie (2017)
Signaling pathway inhibition of VEGFR-II is visualized as valuable tool in cancer management. In the current study, the synthesis of novel 1-4-(7-chloroquinolin-4-yl)piperazin-1-yl)-2-(N-substituted-amino)-ethanone derivatives (4a-t) was achieved through the amination of 2-chloro-1-(4-(7-chloroquinolin-4-yl)piperazin-1-yl)ethanone (3) with different secondary amines. The structures of the target compounds were confirmed by IR, 1 H-NMR, 13 C-NMR, HRMS, and microanalysis. Compounds 4a-t were subjected to in vitro anticancer screening against human breast cancer (MCF-7) and prostate cancer (PC3) cell lines. The highest cytotoxicty against both cell lines was displayed by 2-(4-(4-bromobenzyl)piperazin-1-yl)-1-(4-(7-chloroquinolin-4-yl)piperazin-1-yl)ethanone (4q), with IC50 values of 6.502 and 11.751 μM against MCF-7 and PC3 cells, respectively, compared with the standard drug doxorubicin (MCF-7: 6.774 μM, PC3: 7.7316 μM). Due to its notable activity toward MCF-7 cells, 4q was further evaluated as VEGFR-II inhibitor, showing an IC50 of 1.38 μM compared to sorafenib (0.33 μM). The docking study proved that 4q has a binding mode akin to that of VEGFR-II inhibitors.
Keyphrases