Radon descriptor-based machine learning using CT images to predict the fat tissue on left atrium in the heart.
Deepa DeepaYashbir SinghWeichih HuMing Chen WangPublished in: Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine (2022)
Heart disease has a higher fatality rate than any other disease. Increased Atrial fat on the left atrium has been discovered to cause Atrial Fibrillation (AF) in most patients. AF can put one's life at risk and eventually lead to death. AF might worsen over time; therefore, it is crucial to have an early diagnosis and treatment. To evaluate the left atrium fat tissue pattern using Radon descriptor-based machine learning. This study developed a bridge between the Radon transform framework and machine learning to distinguish two distinct patterns. Motivated by a Radon descriptor-based machine learning approach, the patches of eight patients from CT images of the heart were used and categorized into "epicardial fat tissue" and "nonfat tissue" groups. The 10 feature vectors are extracted from each big patch using Radon descriptors and then fed into a traditional machine learning model. The results show that the proposed methodology discriminates between fat tissues and nonfat tissues clearly. KNN has shown the best performance with 96.77% specificity, 98.28% sensitivity, and 97.50% accuracy. To our knowledge, this study is the first attempt to provide a Radon transform-based machine learning method to distinguish between fat tissue and nonfat tissue on the left atrium. Our proposed research method could be potentially used in advanced interventions.
Keyphrases
- machine learning
- atrial fibrillation
- adipose tissue
- deep learning
- artificial intelligence
- big data
- catheter ablation
- left atrial appendage
- end stage renal disease
- ejection fraction
- newly diagnosed
- fatty acid
- heart failure
- gene expression
- pulmonary artery
- inferior vena cava
- healthcare
- computed tomography
- prognostic factors
- left atrial
- physical activity
- acute coronary syndrome
- oral anticoagulants
- positron emission tomography
- magnetic resonance
- direct oral anticoagulants
- image quality
- pulmonary embolism
- patient reported outcomes
- coronary artery disease
- contrast enhanced
- patient reported