Login / Signup

Tracking Dye-Independent Approach to Identify and Isolate In Vitro Expanded T Cells.

George EliasBenson OgunjimiViggo Van Tendeloo
Published in: Cytometry. Part A : the journal of the International Society for Analytical Cytology (2019)
T cell proliferation is routinely identified in vitro using tracking dyes or through detecting intracellular upregulation of the nuclear protein, Ki-67. However, labeling with tracking dyes is cumbersome, associated with cellular toxicity, while Ki-67 cannot be used to identify and isolate viable T cells, and both techniques are incompatible with MACS technology. Here, we introduce a simple tool to identify and isolate in vitro T cell expansion that is tracking dye-independent and allows for sorting of viable T cells. We show that CD71, a transferrin receptor, and CD98, a heterodimer glycoprotein involved in both integrin signaling and amino-acid transport, are both highly upregulated on proliferating T cells upon in vitro stimulation, and that CD71 expression is maximal on the more recent progeny T cells, while CD98 upregulation remains stable across different generations of progeny T cells. Moreover, we demonstrate that the upregulation of CD71 and CD98 identifies CFSElow T cells and provides further proof of the antigen-specificity of T cells identified by CD71 and CD98 dual upregulation based on tetramer staining. We further show that CD71 can be used to enrich for in vitro expanding T cells using MACS technology. In conclusion, we show that CD71 and CD98 can be used to identify and isolate expanded T cells following in vitro stimulation and that CD71 is an MACS-compatible alternative to tracking dyes or Ki-67 detection. © 2019 International Society for Advancement of Cytometry.
Keyphrases
  • cell proliferation
  • nk cells
  • poor prognosis
  • amino acid
  • oxidative stress
  • radiation therapy
  • body composition
  • binding protein
  • long non coding rna
  • neoadjuvant chemotherapy
  • quantum dots
  • flow cytometry