Login / Signup

One-carbon metabolite supplementation increases vitamin B12, folate, and methionine cycle metabolites in beef heifers and fetuses in an energy dependent manner at day 63 of gestation.

Jessica G SyringMatthew S CrouseYssi L EntzieLayla E KingMara R HirchertAlison K WardLawrence P ReynoldsPawel P BorowiczCrosswhite Carl R DahlenJoel S Caton
Published in: Journal of animal science (2024)
One-carbon metabolites (OCM) are metabolites and cofactors which include folate, vitamin B12, methionine, and choline that support methylation reactions. The objectives of this study were to investigate the effects of moderate changes in maternal body weight gain in combination with OCM supplementation during the first 63 d of gestation in beef cattle on (1) B12 and folate concentrations in maternal serum (2) folate cycle intermediates in maternal and fetal liver, allantoic fluid (ALF), and amniotic fluid (AMF) and (3) metabolites involved in one-carbon metabolism and related metabolic pathways in maternal and fetal liver. Heifers were either intake restricted (RES) and fed to lose 0.23 kg/d, or fed to gain 0.60 kg/d (CON). Supplemented (+ OCM) heifers were given B12 and folate injections weekly and fed rumen-protected methionine and choline daily, while non-supplemented (-OCM) heifers were given weekly saline injections. These two treatments were combined in a 2 × 2 factorial arrangement resulting in 4 treatments: CON-OCM, CON + OCM, RES-OCM, and RES + OCM. Samples of maternal serum, maternal and fetal liver, ALF, and AMF were collected at slaughter on day 63 of gestation. Restricted maternal nutrition most notably increased (./ ≤ 0.05) the concentration of vitamin B12 in maternal serum, 5,10-methylenetetrahydrofolate and 5,10-methenyltetrahydrofolate in maternal liver, and cystathionine in the fetal liver; conversely, maternal restriction decreased (P = 0.05) 5,10-methylenetetrahydrofolate concentration in fetal liver. Supplementing OCM increased (P ≤ 0.05) the concentrations of maternal serum B12, folate, and folate intermediates, ALF and AMF 5-methyltetrahydrofolate concentration, and altered (P ≤ 0.02) other maternal liver intermediates including S-adenosylmethionine, dimethylglycine, cystathionine Glutathione reduced, glutathione oxidized, taurine, serine, sarcosine, and pyridoxine. These data demonstrate that OCM supplementation was effective at increasing maternal OCM status. Furthermore, these data are similar to previously published literature where restricted maternal nutrition also affected maternal OCM status. Altering OCM status in both the dam and fetus could impact fetal developmental outcomes and production efficiencies. Lastly, these data demonstrate that fetal metabolite abundance is highly regulated, although the changes required to maintain homeostasis may program altered metabolism postnatally.
Keyphrases