CMR Tissue Characterization in Patients with HFmrEF.
Patrick DoeblinDjawid HashemiRadu TanacliTomas LapinskasRolf GebkerChristian StehningLaura Astrid MotzkusMoritz BlumElvis TahirovicAleksandar DordevicRobin KraftSeyedeh Mahsa ZamaniBurkert PieskeFrank EdelmannHans-Dirk DüngenSebastian KellePublished in: Journal of clinical medicine (2019)
The characteristics and optimal management of heart failure with a moderately reduced ejection fraction (HFmrEF, LV-EF 40-50%) are still unclear. Advanced cardiac MRI offers information about function, fibrosis and inflammation of the myocardium, and might help to characterize HFmrEF in terms of adverse cardiac remodeling. We, therefore, examined 17 patients with HFpEF, 18 with HFmrEF, 17 with HFrEF and 17 healthy, age-matched controls with cardiac MRI (Phillips 1.5 T). T1 and T2 relaxation time mapping was performed and the extracellular volume (ECV) was calculated. Global circumferential (GCS) and longitudinal strain (GLS) were derived from cine images. GLS (-15.7 ± 2.1) and GCS (-19.9 ± 4.1) were moderately reduced in HFmrEF, resembling systolic dysfunction. Native T1 relaxation times were elevated in HFmrEF (1027 ± 40 ms) and HFrEF (1033 ± 54 ms) compared to healthy controls (972 ± 31 ms) and HFpEF (985 ± 32 ms). T2 relaxation times were elevated in HFmrEF (55.4 ± 3.4 ms) and HFrEF (56.0 ± 6.0 ms) compared to healthy controls (50.6 ± 2.1 ms). Differences in ECV did not reach statistical significance. HFmrEF differs from healthy controls and shares similarities with HFrEF in cardiac MRI parameters of fibrosis and inflammation.