Login / Signup

Tau seeding and spreading in vivo is supported by both fibrillar and oligomeric tau.

Anastasie Mate de GerandoLindsay A WelikovitchAnita KhasnavisCaitlin ComminsCalina GlynnRomain PerbetBradley T Hyman
Published in: bioRxiv : the preprint server for biology (2023)
Insoluble fibrillar tau, the primary constituent of neurofibrillary tangles, has traditionally been thought to be the biologically active, toxic form of tau mediating neurodegeneration in Alzheimer’s disease. More recent studies have implicated soluble oligomeric tau species, referred to as high molecular weight (HMW) due to its properties on size exclusion chromatography, in tau propagation across neural systems. These two forms of tau have never been directly compared. We prepared sarkosyl insoluble and HMW tau from the frontal cortex of Alzheimer patients compared their properties using a variety of biophysical and bioactivity assays. Sarkosyl insoluble fibrillar tau is comprised of paired helical filaments seen by electron microscopy (EM), and is more resistant to proteinase K, compared to HMW tau which presents only sparse, short, filaments. Sarkosyl insoluble and HMW tau are nearly equivalent in potency in a HEK cell bioactivity assay for seeding aggregates. Injection of sonicated fibrils or native HMW tau reveals similar local uptake into hippocampal neurons in PS19 Tau transgenic mice. However, the HMW preparation appears to be far more potent in inducing a glial response, and promotes rapid propagation of misfolded tau to distal, anatomically connected regions, such as entorhinal and perirhinal cortices. These data suggest that soluble HMW tau has similar properties with regard to tau seeding potential but may be equal or even more bioactive with respect to propagation across neural systems and activation of glial responses, both relevant tau-related Alzheimer phenotypes.
Keyphrases