Precision medicine is a framework for developing evidence-based medical recommendations that seeks to determine the optimal sequence of treatments tailored to all of the relevant patient-level characteristics which are observable. Because precision medicine relies on highly sensitive, patient-level data, ensuring the privacy of participants is of great importance. Dynamic treatment regimes (DTRs) provide one formalization of precision medicine in a longitudinal setting. Outcome-Weighted Learning (OWL) is a family of techniques for estimating optimal DTRs based on observational data. OWL techniques leverage support vector machine (SVM) classifiers in order to perform estimation. SVMs perform classification based on a set of influential points in the data known as support vectors. The classification rule produced by SVMs often requires direct access to the support vectors. Thus, releasing a treatment policy estimated with OWL requires the release of patient data for a subset of patients in the sample. As a result, the classification rules from SVMs constitute a severe privacy violation for those individuals whose data comprise the support vectors. This privacy violation is a major concern, particularly in light of the potentially highly sensitive medical data which are used in DTR estimation. Differential privacy has emerged as a mathematical framework for ensuring the privacy of individual-level data, with provable guarantees on the likelihood that individual characteristics can be determined by an adversary. We provide the first investigation of differential privacy in the context of DTRs and provide a differentially private OWL estimator, with theoretical results allowing us to quantify the cost of privacy in terms of the accuracy of the private estimators.
Keyphrases
- big data
- machine learning
- electronic health record
- healthcare
- health information
- artificial intelligence
- magnetic resonance
- case report
- public health
- health insurance
- end stage renal disease
- computed tomography
- ejection fraction
- data analysis
- newly diagnosed
- social media
- chronic kidney disease
- mass spectrometry
- cross sectional
- network analysis
- smoking cessation
- combination therapy
- label free
- patient reported outcomes
- amino acid
- patient reported