DNA Tile and Invading Stacking Primer-Assisted CRISPR-Cas12a Multiple Amplification System for Entropy-Driven Electrochemical Detection of MicroRNA with Tunable Sensitivity.
Huan WangYan Lei LiYa Jie FanJiang Xue DongXiang RenHong Min MaDan WuZhong-Feng GaoQin WeiFan XiaPublished in: Analytical chemistry (2023)
Conventional electrochemical detection of microRNA (miRNA) encounters issues of poor sensitivity and fixed dynamic range. Here, we report a DNA tile and invading stacking primer-assisted CRISPR-Cas12a multiple amplification strategy to construct an entropy-controlled electrochemical biosensor for the detection of miRNA with tunable sensitivity and dynamic range. To amplify the signal, a cascade amplification of the CRISPR-Cas12a system along with invading stacking primer signal amplification (ISPSA) was designed to detect trace amounts of miRNA-31 (miR-31). The target miR-31 could activate ISPSA and produce numerous DNAs, triggering the cleavage of the single-stranded linker probe (LP) that connects a methylene blue-labeled DNA tile with a DNA tetrahedron to form a Y-shaped DNA scaffold on the electrode. Based on the decrease of current, miR-31 can be accurately and efficiently detected. Impressively, by changing the loop length of the LP, it is possible to finely tune the entropic contribution while keeping the enthalpic contribution constant. This strategy has shown a tunable limit of detection for miRNA from 0.31 fM to 0.56 pM, as well as a dynamic range from ∼2200-fold to ∼270,000-fold. Moreover, it demonstrated satisfactory results in identifying cancer cells with a high expression of miR-31. Our strategy broadens the application of conventional electrochemical biosensing and provides a tunable strategy for detecting miRNAs at varying concentrations.
Keyphrases
- label free
- crispr cas
- cell proliferation
- long non coding rna
- nucleic acid
- genome editing
- long noncoding rna
- circulating tumor
- gold nanoparticles
- single molecule
- cell free
- computed tomography
- loop mediated isothermal amplification
- real time pcr
- risk assessment
- molecularly imprinted
- circulating tumor cells
- positron emission tomography