Login / Signup

Relationships between Structure and Antioxidant Capacity and Activity of Glycosylated Flavonols.

Zhengcao XiaoLiangliang HeXiaohui HouJianping WeiXiaoyu MaZihan GaoYahong YuanJianbo XiaoPengmin LiTianli Yue
Published in: Foods (Basel, Switzerland) (2021)
The antioxidant capacity (AC) and antioxidant activity (AA) of three flavonols (FLV), aglycones and their glycosylated derivatives were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays in various solvents. Findings confirmed that the glycosylation at the 3-position (3-glycosylation) always decreased the AC under most conditions due to substitution of the 3-position hydroxyl group and glycoside disruption in the molecular planarity. The 7-glycosylated derivatives did not have the above effects, thus generally exhibited ACs similar to their aglycones. Glycosylation decreased the AA of kaempferol and isorhamnetin for both assays in methanol, 3-glycosylation inhibited quercetin AA in the ABTS assay. In the DPPH assay, the AA of 3-glycosylated quercetin was significantly higher than quercetin. Using LC-MS/MS analysis, we found that quercetin and quercetin-7-glucoside underwent dimerization during the antioxidant reaction, potentially leading to a decline in AAs. However, 3-glycoside substitution may have hindered dimer formation, thereby allowing the FLVs to retain strong free radical scavenging abilities.
Keyphrases
  • high throughput
  • ionic liquid
  • acute coronary syndrome
  • oxidative stress
  • single cell
  • crystal structure