Three weeks of interrupting sitting lowers fasting glucose and glycemic variability, but not glucose tolerance, in free-living women and men with obesity.
Jonathon A B SmithMladen SavikjParneet SethiSimon PlattBrendan M GabrielJohn A HawleyDavid DunstanAnna KrookJuleen R ZierathErik NäslundPublished in: American journal of physiology. Endocrinology and metabolism (2021)
We aimed to determine whether interrupting prolonged sitting improves glycemic control and the metabolic profile of free-living adults with obesity. Sixteen sedentary individuals {10 women/6 men; median [interquartile range (IQR)] age 50 (44-53) yr, body mass index (BMI) 32 (32-35.8) kg/m2} were fitted with continuous glucose and activity monitors for 4 wk. After a 1-wk baseline period, participants were randomized into habitual lifestyle (Control) or frequent activity breaks from sitting (FABS) intervention groups. Each day, between 0800 and 1800 h, FABS received smartwatch notifications to break sitting with 3 min of low-to-moderate-intensity physical activity every 30 min. Glycemic control was assessed by oral glucose tolerance test (OGTT) and continuous glucose monitoring. Blood samples and vastus lateralis biopsies were taken for assessment of clinical chemistry and the skeletal muscle lipidome, respectively. Compared with baseline, FABS increased median steps by 744 [IQR (483-951)] and walking time by 10.4 [IQR (2.2-24.6)] min/day. Other indices of activity/sedentary behavior were unchanged. Glucose tolerance and average 24-h glucose curves were also unaffected. However, mean (±SD) fasting glucose levels [-0.34 (±0.37) mmol/L] and daily glucose variation [%CV; -2% (±2.2%)] reduced in FABS, suggesting a modest benefit for glycemic control that was most robust at higher volumes of daily activity. Clinical chemistry and the skeletal muscle lipidome were largely unperturbed, although two long-chain triglycerides increased 1.25-fold in FABS, postintervention. All parameters remained stable in control. Under free-living conditions, FABS lowered fasting glucose and glucose variability. Larger volumes of activity breaks from sitting may be required to promote greater health benefits.NEW & NOTEWORTHY Under free-living conditions, breaking sitting modestly increased activity behavior. Breaking sitting was insufficient to modulate glucose tolerance or the skeletal muscle lipidome. Activity breaks reduced fasting blood glucose levels and daily glucose variation compared with baseline, with a tendency to also decrease fasting LDLc. This intervention may represent the minimal dose for breaking sedentary behavior, with larger volumes of activity possibly required to promote greater health benefits.
Keyphrases
- blood glucose
- glycemic control
- type diabetes
- insulin resistance
- physical activity
- skeletal muscle
- weight loss
- body mass index
- metabolic syndrome
- polycystic ovary syndrome
- healthcare
- blood pressure
- public health
- randomized controlled trial
- weight gain
- adipose tissue
- placebo controlled
- health information
- sleep quality
- phase iii