Login / Signup

Engineering broad-spectrum disease-resistant rice by editing multiple susceptibility genes.

Hui TaoXuetao ShiFeng HeDan WangNing XiaoHong FangRuyi WangFan ZhangMin WangAihong LiXionglun LiuGuo-Liang WangYuese Ning
Published in: Journal of integrative plant biology (2021)
Rice blast and bacterial blight are important diseases of rice (Oryza sativa) caused by the fungus Magnaporthe oryzae and the bacterium Xanthomonas oryzae pv. oryzae (Xoo), respectively. Breeding rice varieties for broad-spectrum resistance is considered the most effective and sustainable approach to controlling both diseases. Although dominant resistance genes have been extensively used in rice breeding and production, generating disease-resistant varieties by altering susceptibility (S) genes that facilitate pathogen compatibility remains unexplored. Here, using CRISPR/Cas9 technology, we generated loss-of-function mutants of the S genes Pi21 and Bsr-d1 and showed that they had increased resistance to M. oryzae. We also generated a knockout mutant of the S gene Xa5 that showed increased resistance to Xoo. Remarkably, a triple mutant of all three S genes had significantly enhanced resistance to both M. oryzae and Xoo. Moreover, the triple mutant was comparable to the wild type in regard to key agronomic traits, including plant height, effective panicle number per plant, grain number per panicle, seed setting rate, and thousand-grain weight. These results demonstrate that the simultaneous editing of multiple S genes is a powerful strategy for generating new rice varieties with broad-spectrum resistance.
Keyphrases
  • genome wide
  • crispr cas
  • wild type
  • genome wide identification
  • bioinformatics analysis
  • genome editing
  • genome wide analysis
  • dna methylation
  • weight loss
  • physical activity
  • cell wall