Login / Signup

ATP1A3 regulates protein synthesis for mitochondrial stability under heat stress.

Fumihiko FujiiHikaru KanemasaSayaka OkuzonoDaiki SetoyamaRyoji TairaKousuke YonemotoYoshitomo MotomuraHiroki KatoKeiji MasudaTakahiro A KatoShouichi OhgaYasunari Sakai
Published in: Disease models & mechanisms (2024)
Pathogenic variants in ATP1A3, the α3 subunit of the Na+/K+-ATPase-encoding gene, cause alternating hemiplegia of childhood (AHC) and related disorders. Impairments in Na+/K+-ATPase activity are associated with the clinical phenotype. However, it remains unclear whether additional mechanisms are involved in the exaggerating symptoms under stressed conditions in patients with AHC. We herein report that the intracellular loop (ICL) of ATP1A3 interacted with RNA-binding proteins, such as EIF4G, PABPC1 and FMRP. Both the siRNA-mediated depletion of Atp1a3 and ectopic expression of the p.R756C-variant ATP1A3-ICL in Neuro2a cells resulted in excessive phosphorylation of ribosomal protein S6 and increased susceptibility to heat stress. In agreement with these findings, iPSCs from a patient with the p.R756C variant were more vulnerable to heat stress than control iPSCs. Neurons established from the patient's iPSCs showed lower calcium influxes in responses to stimulation with ATP than controls. These data indicated that inefficient protein synthesis contributes to the progressive and deteriorating phenotypes of patients with the p.R756C variant among a variety of ATP1A3-related disorders.
Keyphrases